
Fast Exact Toffoli Network Synthesis of Reversible Logic
Robert Wille and Daniel Große

Group for Computer Architecture (Prof. Dr. Rolf Drechsler)
University of Bremen, 28359 Bremen, Germany
{rwille,grosse}@informatik.uni-bremen.de

Abstract— The research in the field of reversible logic is motivated
by its application in low-power design, optical computing and quantum
computing. Hence synthesis of reversible logic has become a very
important research area in the last years. In this paper exact algorithms
for the synthesis of generalized Toffoli networks are considered. We
present an improvement of an existing synthesis approach that is
based on Boolean Satisfiability. Furthermore, the principle limits of the
original and the improved approach are shown. Then, we propose a new
method using problem specific knowledge during the synthesis process to
overcome these limits. Experimental results demonstrate improvements
of the overall synthesis time up to four orders of magnitude.

I. INTRODUCTION

Reversible logic has applications in low-power design, optical
computing and especially in quantum computing. In the context
of quantum computation it is known that some exponentially hard
problems can be solved in polynomial time [1]. Necessarily all
quantum computations are reversible. Therefore synthesis of re-
versible logic has become an intensively studied topic. The synthesis
of reversible logic differs significantly from traditional irreversible
logic. In a reversible network fan-out and feed-back are not allowed.
Consequently a network for reversible logic consists of a cascade of
reversible gates. The most frequently used gate type is the Toffoli
gate [2] which will also be used in this paper. The idea of this gate
is to invert one input line (the target line) if the product of a set of
control lines evaluates to true.

For the synthesis of reversible logic several approaches have
been proposed. An approach that is based on enumeration and that
uses network equivalences to rewrite a limited set of gates has
been presented in [3]. Other synthesis procedures use heuristics like
e.g. spectral techniques [4], positive polarity Reed-Muller expansions
[5] or transformation based synthesis [6]. In [7] a method has been
proposed that synthesizes the reversible function in a first step and
then based on transformations (using so called templates) a realization
with fewer gates is computed. An exact synthesis method based on
reachability analysis is described in [8]. However, this procedure
is geared towards quantum gates, not Toffoli gates. Recently, in
[9] the first exact synthesis approach for reversible logic using
generalized Toffoli gates has been presented. This approach uses
Boolean Satisfiability (SAT) during the synthesis process. Since the
synthesis problem is transformed to the Boolean level complexity
problems occur.

The contribution of this paper is twofold. First, we lift the encoding
of the synthesis problem to a higher level. Based on this formulation,
the SAT solver used in [9] is replaced by a Satisfiability Modulo
Theories (SMT) solver. As shown by the experiments this already
leads to a significant speed-up of the synthesis algorithm. Second,
after a detailed analysis of the principle limits of these synthesis pro-
cedures we propose a completely new approach. Based on a general
solver framework problem specific knowledge is available during the
search process. Within this framework we specify dedicated modules
to represent a network of generalized Toffoli gates. Besides a high-
level and very compact problem representation, the modules allow
for much more efficient decision and propagation strategies. In total,
our new approach outperforms previous approaches up to four orders
of magnitude.

The paper is structured as follows. Background on reversible logic
and SAT is presented in the next section. Section III describes the
exact synthesis algorithm. Here the basic concept of [9] is reviewed
and a more general encoding on a higher level is introduced. In
Section IV the limits of these approaches are discussed. Then,
the solver framework and the new problem specific approach are
presented. Finally, experimental results and a summary are given in
the last two sections.

II. PRELIMINARIES

A. Reversible Logic

A reversible logic gate is a n-input n-output function that maps
each possible input vector to a unique output vector. In other words
this function is a bijection. Many reversible gates have been studied.
Generalized Toffoli gates [2] are widely used. In the rest of this paper
we only consider Toffoli gates that are defined as follows:

Definition 1: Let X := {x1, . . . , xn} be the set of domain
variables. A generalized Toffoli gate has the form TOF (C, t),
where C = {xi1 , . . . , xik} ⊂ X is the set of control
lines and t = {xj} with C ∩ t = ∅ is the target line.
The gate maps (x1, . . . , xn) to (x1, . . . , xj−1, xj ⊕ xi1 . . . xik ,
xj+1, . . . , xn).

Due to restrictions in quantum mechanics as network topology only
a cascade structure can be used. This structure is simply a number
of Toffoli gates in a cascade.

Definition 2: The reversible cost (or simply, cost) of an implemen-
tation of a reversible function f is defined as the number of gates in
the network representation that realizes f .

In the following the basics of SAT and common used techniques
are given.

B. SAT

The Boolean Satisfiability (SAT) problem is defined as follows:
Definition 3: Let h be a Boolean function in Conjunctive Normal

Form (CNF), i.e. a product-of-sum representation. Then the SAT
problem is to determine whether there exists an assignment to the
variables of h such that h evaluates to true or to prove that no such
assignment exists.

In the past several (backtracking) algorithms (so called SAT solver)
were proposed [10]–[13]. Most of them are based on three essential
procedures: (1) The decision heuristic assigns values to free variables,
(2) the propagation procedure determines implications due to the last
assignment(s) and (3) the conflict analysis tries to resolve conflicts by
backtracking that occur during the search. Advanced techniques like
e.g. efficient Boolean constraint propagation [12] or conflict analysis
[11] are common in state-of-the-art SAT solvers today.

Due to tremendous improvements in the recent past, several
researchers investigated the combination of SAT solvers with decision
procedures for decidable theories resulting in SAT Modulo Theories
(SMT) [14], [15]. A SMT solver integrates a Boolean SAT solver
with other solvers for specialized theories (e.g. bitvector logic as
used later in this paper). Here the SAT solver works on an abstract
representation (also in CNF) of the problem and steers the overall
search process, while each (partial) assignment of this representation



Fig. 1. Representation of the problem

has to be validated by the theory solver for the theory constraints.
Thus, advanced SAT techniques together with specialized theory
solvers can be utilized.

III. EXACT TOFFOLI NETWORK SYNTHESIS

In this section first we briefly review the main flow of the exact
synthesis algorithm for reversible logic from [9]. The basic idea is to
check if there exists a Toffoli network representation for the reversible
function f with d gates, where d is increased in the next iteration
if no realization is found. The iterative checks are performed by (1)
encoding the synthesis problem as a SAT instance and (2) testing the
SAT instance for satisfiability using an off-the-shelf solver.

In the following the general formulation of the synthesis problem
and two encodings are presented. The first encoding uses Boolean
SAT – following the approach in [9] – and the second encoding is
based on SMT.

A. Problem Formulation and Encodings

For a reversible function the synthesis problem is formulated using
three constraints. The resulting constraint formula evaluates to true iff
there exists a Toffoli gate network for the reversible function f (given
as truth table) of cost d. Before the constraint formula is described
in detail some definitions are given:

Definition 4: Let f : Bn → Bn be a reversible function. Then
three variable vectors are defined:

1) ~xk
i = (xk

inxk
i(n−1) . . . xk

i1) with 1 ≤ i ≤ 2n and 0 ≤ k ≤ d is
a Boolean vector representing the input-, temporary- or output
variables at depth k for line i of the truth table of f . The left
side of the truth table corresponds to the vector ~x0

i , the right
side to the vector ~xd

i , respectively.
2) ~tk = (tk

dlog2 ne . . . tk
1) with 0 ≤ k < d is a Boolean vector

representing a binary encoding of a natural number tk ∈
{0, . . . , n − 1} which defines the choosen target line for the
Toffoli gate at depth k.

3) ~ck = (ck
n−1, c

k
n−2, . . . , c

k
1) with 0 ≤ k < d is a Boolean vector

representing the control lines of the Toffoli gate at depth k.
Assigning ck

i = 1 with (1 ≤ i ≤ n − 1) means that line
(tk + i) mod n becomes a control line of the Toffoli gate at
depth k.

As an example the variables needed to formulate the constraints
for a function with n = 3 inputs/outputs and depth d = 2 are shown
in Figure 1. Note: For each of the 23 = 8 lines in the truth table
n = 3 lines in the network with the respective vectors for input-,

temporary- and output variables are used. That is the reason why
overall 3 · 8 = 24 lines are considered to formulate the problem.

Based on the above definitions the synthesis problem for a re-
versible function f with d generalized Toffoli gates can be formulated
as follows: Is there an assignment for all variables of the vectors ~tk

and ~ck such that for each line i ~x0
i is equal to the left side of the

truth table while ~xd
i is equal to the corresponding right side?

More formally the constraint formula is the conjunction of the
following three constraints:

1) The input/output constraints set the input/output pair of each
line of the truth table given by the reversible function f :

2n^
i=1

[~x0
i ]2 = i ∧ [~xd

i ]2 = f(i)

2) The functional constraints for possible Toffoli gates that are
chosen by an assignment to ~tk and ~ck are:

2n^
i=1

d−1̂

k=0

~xk+1
i = t(~xk

i ,~tk,~ck)

These constraints state that if in line i at depth k a Toffoli gate
is selected (i.e. ~tk and ~ck are completely assigned) the variables
in the next depth k+1 are computed from the variables at depth
k with the Toffoli gate function t(~xk

i ,~tk,~ck). The function
t(~xk

i ,~tk,~ck) covers the functionality of a Toffoli gate with
target line tk = [~tk]2 and the control lines defined by ~ck.

3) The exclusion constraints ensure that illegal assignments to
~tk are excluded since not all values of ~tk are necessary to
enumerate all possible target lines:

d−1̂

k=0

[~tk]2 < n

Based on these constraints two encodings are considered in the
following. By the first encoding the constraints are transformed into
CNF. The resulting CNF is used as input for an off-the-shelf SAT-
solver as proposed in [9]. The transformation starts with a conversion
into a Boolean formula. Then, by introducing new variables the CNF
form for the Boolean formula is created. As well known this can
be done in time and space linear in the size of the original Boolean
formula [16]. However, the resulting CNF is only a pure Boolean
representation based on clauses and due to the auxiliary variables
there is a significant overhead. Therefore we propose another en-
coding that avoids the conversion to the Boolean level. Instead the
constraints are represented in bitvector logic that can be handled by
SMT. All bitvector variables and most of the operators are preserved;
hardly any auxiliary variables are needed. Furthermore, compared
to CNF the formulation at this higher level of abstraction allows
stronger implications. By using the SMT-based encoding together
with an off-the-shelf SMT-solver all these advantages are exploited.
The experiments demonstrate that this encoding leads to significant
speed-ups already. However, as shown in the next section even more
runtime can be saved by using our solver framework that exploits
problem specific knowledge of the synthesis problem during the solve
process.

IV. USING PROBLEM SPECIFIC KNOWLEDGE IN EXACT TOFFOLI
NETWORK SYNTHESIS

The two approaches presented in the previous section encode the
synthesis problem of the current iteration and use SAT/SMT solvers
to check if a network for the reversible function exists. These solvers
provide sophisticated techniques like powerful reasoning or learning,
but are only optimized for solving Boolean formulas or bitvector



constraints in general. In this section a new approach is introduced
that uses problem specific information in addition to common SAT
techniques. During the solve process this information becomes avail-
able since our approach represents the synthesis problem in terms of
Toffoli gate modules.

First, the limits of the SAT/SMT-based approaches are discussed.
Then, the framework of the new approach is presented. In the main
part of this section the developed Toffoli modules, dedicated impli-
cation procedures and decision heuristics are introduced. Altogether
the new representation of the synthesis problem as well as the novel
strategies enables dramatic improvements in the overall runtimes.

A. Limits of Common SAT Provers
The input of a SAT solver is a Boolean function in terms of clauses;

the input of a SMT solver is a description in bitvector logic. Both
solvers are optimized for there particular problem representation.
E.g. common SAT solvers utilize the two literal watching scheme to
carry out implications, which exploits the special structure of clauses
[12]. SMT solvers use canonizing to efficiently handle bitvector
constraints [17]. Furthermore, highly optimized heuristics have been
developed e.g. to decide the assignment of variables if no more
implications are possible. Here often strategies are used, which are
based on statistical information, e.g. occurrences or activities of
variables [18].

All these techniques work very well if CNF formulas or bitvector
logic are considered. However, these general solvers are not able
to take specific properties of the problem into account. Promising
problem specific strategies for the exact Toffoli network synthesis
are:

• The type of the Toffoli gates (represented by ~tk and ~ck) near
to the inputs should be defined first, because the corresponding
input variables are already assigned by the truth table.1 This
allows for early implications and helps to determine the types
of the remaining gates or to detect conflicts faster. Thus, ~tk and
~ck with small k should be preferred in the decision procedure.

• If the assignment of an input line of a Toffoli gate is not equal
to the assignment of the corresponding output line of the same
gate, this line has to be the target line. This observation allows
to imply the assignment of variables in ~tk.

• If the target line of a Toffoli gate is known the values of all
remaining lines can be implied if there is an assignment at the
corresponding input or output.

These specific strategies cannot be provided by a standard SAT
or SMT solver. Moreover, extensions of standard solvers in this
direction (e.g. by modifications of the heuristics) are not possible
in general, because most of the problem specific information is lost
while encoding the instance. SAT and SMT solvers just have a
clause database or constraint database. Thus, procedures like the ones
described above can only be exploited with a solver that is based on
a problem specific representation.2

B. Framework
To formulate the exact synthesis problem we use the framework

provided by SWORD [19]. Here, the problem is represented in terms
of so called modules. Thus, while SAT solvers provide strategies
optimized for clauses and SMT solvers for bitvector constraints,
this framework makes problem specific information available in
the modules and thereby allows dedicated decision and propagation
strategies. Furthermore, it utilizes all sophisticated SAT techniques
like conflict analysis or learning as well.

1This observation also holds for modules near to the outputs.
2In principle, this problem can be prevented by introducing additional

constraints to the problem instance. But then the encoding becomes inefficient
due to a very large number of constraints.

Fig. 2. Framework

The architecture of the framework is shown in Figure 2. The basic
algorithm is similar to the procedures as applied in standard SAT or
SMT solvers: While free variables remain (a) a decision is made (c),
implications resulting from this decision are carried out (d), and if a
conflict occurs, it is analyzed (f). The important difference is that the
framework has two operation levels: the global algorithm controls the
overall search process and calls the local procedures of modules for
decision and implication. Thus, decision making and the implication
engine can be adjusted for each module.

In more detail, the solver first chooses a particular module based on
a global decision heuristic (c.1). Then, this module chooses a value
for one of its variables according to a local decision heuristic (c.2).
Afterwards, the solver calls the local implication procedures (d.2) of
all modules that are potentially affected (d.1) by the previous decision
or implication. The chosen modules imply further assignments and
detect conflicts.

C. Toffoli Synthesis
In the following sections we describe the customization of the

framework for the exact Toffoli synthesis. First, we introduce the
developed Toffoli gate module. Then, the decision and propagation
strategies including the local and global procedures are described.

1) Toffoli Module: A concrete Toffoli synthesis instance for the
reversible function f with cost d consists of d instantiated modules
in a cascade structure – for each depth k one module. Each module
has access to its relating variables ~tk, ~ck, ~xk

i and ~xk+1
i . A module

corresponds to the dashed area in Figure 1. The functionality of a
Toffoli gate is defined by methods of the module, i.e. a concrete
Toffoli gate function is selected by assigning ~tk and ~ck (see also
Definition 4).

2) Decision Strategies: The decision heuristic chooses a variable
that is assigned if no further implication is possible. Therefore
decisions are preferred that cause many implications. Both, the global
and the local decision strategy is motivated by the following two
observations:

• A module can imply many other assignments if the target line
tk of the represented gate is known (i.e. if ~tk is completely
assigned), because in this case the input ~xk

i and the output ~xk+1
i

of all lines i except the target line has to be equal.
• The assignment of most of the inputs ~xk

i of a gate are either
given by the truth table (if k = 0) or they can be implied if the
types of the previous gates are defined.

These observations lead to the following decision heuristics:
• Global decision heuristic

Modules whose target lines are still undefined, are selected to



(1) for each (line i)
(2) if (~xk

i 6= ~xk+1
i ) // input 6= output

(3) imply(~tk); // use value of i
(4) for each (line i)
(5) if (i == [~tk]2) continue;
(6) imply(~xk

i or ~xk+1
i );

(7) flipTargetLine = true;
(8) for each (ck

i ∈ ~ck)
(9) if (ck

i == 1 ∧ ~xk
tk+i mod n == 0)

(10) flipTargetLine = false;
(11) break;
(12) if (!flipTargetLine)
(13) imply(~xk+1

tk ); // use value of ~xk
tk

(14) else
(15) if (~ck completely defined)
(16) imply(~xk+1

tk ); // use value of ~xk
tk ⊕ 1

Fig. 3. Propagate routine for module at depth k

make a decision. If all target lines of each module are defined,
the module that still has other unassigned variables (from the
vector ~ck for example) is selected. During this process the
modules are considered in ascending order starting with depth
k = 0.

• Local decision heuristic
Variables representing the target line of the respective Toffoli
gate are decided first. If all target line variables are assigned,
variables corresponding to the control lines are decided.

Since the overall decision strategy (global and local) ensures, that the
gates become completely defined from the first gate to the last gate,
there is no need for deciding the variables representing the inputs or
outputs. These variables are implied after the corresponding types of
the previous gates are defined.

3) Propagation Strategies: The propagation procedures of a mod-
ule consider the connected variables for the implication of the values.
The pseudo-code of the propagation routine is shown in Figure 3. The
propagation routine is divided in three cases:

1) Propagate the position of the target line (lines 1-3)
If the assignment of an input is not equal to the assignment of
the corresponding output of the same line, then this line has to
be the target line of the gate. The position tk of this target line
is assigned to ~tk.

2) Propagate non-target lines (lines 4-6)
If the target line is known all outputs are implied whose
corresponding inputs are assigned (except the ones at the target
lines). This also holds vice versa. Thus, the output (input) is
assigned to the value of the corresponding input (output).

3) Propagate the target line (lines 7-16)
In the last step the outputs of the target line is assigned. To do
so, the assignment of the control lines ~ck and the corresponding
input variables are considered. If a line is a control line and the
input of this line is 0 (line 9), then the output of the target line
has to be equal to its corresponding input (line 13). Otherwise,
if additionally ~ck is completely defined (i.e. no other control
line with input value 0 can occur), the output of the target line
has to be equal to the opposite value of the input of this line
(line 16).

Altogether the presented decision and propagation strategies allows
both, efficient proofs that a Toffoli network with cost d for a given
function f exists or that no such network exists. In the first case the
resulting network can be extracted from the assignments to ~tk and ~ck.

V. EXPERIMENTAL RESULTS

This section provides experimental results for the exact Toffoli
network synthesis. As solver for the CNF encoding of [9] MiniSat
v1.14 [13] and as solver for the SMT encoding described in Sec-
tion III MathSat3 [14] have been used, respectively. The problem
specific approach described in Section IV has been implemented in
C++. All experiments were carried out on a AMD Athlon 3500+ with
1 GB of memory. The timeout was set to 5000 CPU seconds.

The results are shown in Table I. The first column provides the
name of the benchmark. In column depth the minimal costs (i.e. the
minimal number of Toffoli gates) necessary to synthesize the function
is given. The next column provides the runtime of the particular
synthesis algorithms in CPU seconds (denoted by Time). Furthermore,
the improvements of the new approaches are given, i.e. the runtime
of MiniSat divided by the runtime of MathSat/the problem specific
approach (denoted by Imprcnf ) and the runtime of MathSat divided by
the runtime of the problem specific approach (denoted by Imprsmt ),
respectively.

In total three sets of benchmarks have been considered: Completely
specified, incompletely specified and random generated functions.
The specification of 3 17 and mod5mils can be found on [21]; peres,
fredkin and miller on [22], [23] and [24], respectively. The peres-
double function is specified by cascading two Peres functions, the
mod5d1 and mod5d2 functions realize the Grover’s oracle and gray-
code6 computes the graycode. The incomplete specified functions
decod24 and ALU are described in [5], 4mod5 specifies a divisibility
checker and rd32 defines a full adder. Here, several options for
embedding these functions into reversible ones are available. First,
one can chose how to set the constant inputs. Second, there is a
choice in where to place the garbage outputs. In Table I the results
for different configurations are documented (indicated by -v0, -v1,
. . .). Finally, random functions with four inputs have been generated
for further experimental tests.

As the results show, for most of the benchmarks a corresponding
Toffoli network can be synthesized faster by the SMT approach than
by using the CNF formulation. Only in some cases the CNF approach
is slightly better. However, this only holds for benchmarks that can be
synthesized in less than one second, e.g. peres or fredkin. On average
improvements by a factor of 10 are achieved; in the best case a factor
of 179. But as can be seen the problem specific approach outperforms
both approaches. Here, the runtimes are further reduced by a factor
ranging from 20 to 60 for nearly all benchmarks. Furthermore, using
the problem specific approach, Toffoli networks for the benchmarks
ALU-v2 and ALU-v3 are synthesized within the given timeout. In
comparison to the CNF synthesis algorithm of [9] on average speed-
ups of three orders of magnitude are obtained when using the problem
specific approach; for the best case (graycode6) a speed-up of four
orders of magnitude is documented.

VI. CONCLUSIONS

It has been shown, that choosing an encoding for exact Toffoli
network synthesis is crucial for the resulting runtimes. Further-
more, an algorithm has been presented that uses problem specific
information during the synthesis process. This allows to incorporate
dedicated strategies that improve the synthesis time dramatically. The
experiments have shown speed-ups of up to four orders of magnitude
using the proposed approach.

3Because the current free state-of-the-art SMT solver Yices [15] (according
to SMTLIB [20]) showed some buggy behavior for certain benchmarks (also
observed at SMT Competition 2007) no experiments for this solver are
documented here.



TABLE I
EXPERIMENTAL RESULTS

CNF SMT PROBLEM SPECIFIC APPROACH
BENCHMARK DEPTH TIME TIME IMPRcnf TIME IMPRcnf IMPRsmt

COMPLETE SPECIFIED FUNCTIONS
peres 2 0.01s 0.03s 0.33 < 0.01s > 1.00 > 33.00

fredkin 3 0.03s 0.12s 0.25 < 0.01s > 3.00 > 24.00
peres-double 4 2.35s 0.36s 6.53 0.01s 235.00 36.00

miller 5 0.23s 0.22s 1.05 < 0.01s > 23.00 > 22.00
mod5mils 5 48.28s 3.81s 12.67 0.08s 603.50 47.63
graycode6 5 583.14s 3.25s 179.43 0.12s 4859.50 27.08

3 17 6 0.43s 0.72s 0.59 0.03s 14.33 24.00
mod5d1 7 2094.13s 135.36s 15.47 11.21s 186.80 12.07
mod5d2 8 1616.07s 56.72s 28.49 9.06s 178.37 6.26

INCOMPLETE SPECIFIED FUNCTIONS
rd32-v0 4 2.97s 0.54s 5.50 < 0.01s > 297.00 > 54.00
rd32-v1 5 13.51s 1.84s 7.34 0.04s 337.75 46.00

4mod5-v0 5 122.54s 12.70s 9.65 0.69s 177.59 18.40
4mod5-v1 5 413.21s 43.86s 9.42 0.48s 860.85 91.38

decod24-v0 6 6.54s 1.33s 4.92 0.02s 327.00 66.50
decod24-v1 6 6.22s 1.44s 4.32 0.09s 69.11 16.00
decod24-v2 6 7.25s 1.35s 5.37 0.02s 362.50 67.50
decod24-v3 7 28.88s 3.31s 8.73 0.18s 160.44 18.39

ALU-v0 6 1998.83s 223.48s 8.94 8.76s 228.18 25.51
ALU-v1 7 > 5000s 1692.29s > 2.95 369.14s > 13.54 4.58
ALU-v2 7 > 5000s > 5000s – 840.25s > 5.95 > 5.95
ALU-v3 7 > 5000s > 5000s – 764.04s > 6.54 > 6.54

RANDOM FUNCTIONS
rand0 8 158.43s 22.05s 7.19 11.14s 14.22 1.98
rand1 8 758.53s 53.96s 14.06 6.93s 109.46 7.79
rand2 9 1324.90s 179.83s 7.37 63.25s 20.95 2.84
rand3 9 907.79s 195.46s 4.64 116.56s 7.79 1.68
rand4 9 2696.71s 426.98s 6.32 92.72s 29.08 4.61

VII. ACKNOWLEDGMENT

We wish to thank Rolf Drechsler and Gerhard Dueck for many
helpful discussions and inspirations. Furthermore, we thank Mathias
Soeken for his help in the area of SMT.

REFERENCES

[1] M. A. Nielsen and I. Chuang, Quantum computation and quantum
information. Cambridge University Press, 2000.

[2] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[3] V. Shende, A. Prasad, I. Markov, and J. Hayes, “Reversible logic circuit
synthesis,” in Int’l Conf. on CAD, 2002, pp. 353–360.

[4] D. M. Miller and G. W. Dueck, “Spectral techniques for reversible
logic synthesis,” in 6th International Symposium on Representations and
Methodology of Future Computing Technology, 2003, pp. 56–62.

[5] P. Gupta, A. Agrawal, and N. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 11, pp. 2317–2330, 2006.

[6] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[7] D. Maslov, G. W. Dueck, and D. M. Miller, “Toffoli network synthesis
with templates.” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 24, no. 6, pp. 807–817, 2005.

[8] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, “Optimal
synthesis of multiple output Boolean functions using a set of quantum
gates by symbolic reachability analysis.” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 25, no. 9, pp. 1652–1663, 2006.

[9] D. Große, X. Chen, G. Dueck, and R. Drechsler, “Exact SAT-based
toffoli network synthesis,” in Great Lakes Symp. VLSI, 2007, pp. 96–
101.

[10] M. Davis, G. Logeman, and D. Loveland, “A machine program for
theorem proving,” Comm. of the ACM, vol. 5, pp. 394–397, 1962.

[11] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for
propositional satisfiability,” IEEE Trans. on Comp., vol. 48, no. 5, pp.
506–521, 1999.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf., 2001,
pp. 530–535.

[13] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.
LNCS, vol. 2919, 2004, pp. 502–518.

[14] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum,
S. Schulz, and R. Sebastiani, “The MathSAT 3 System,” in Int. Conf.
on Automated Deduction, 2005.

[15] B. Dutertre and L. Moura, “The YICES SMT Solver,” 2006, available
at http://yices.csl.sri.com/.

[16] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logic, Part
2, 1968, pp. 115–125, (Reprinted in: J. Siekmann, G. Wrightson (Ed.),
Automation of Reasoning, Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

[17] C. Barrett, D. Dill, and J. Levitt, “A decision procedure for bit-vector
arithmetic,” in Design Automation Conf., 1998, pp. 522–527.

[18] J. Marques-Silva, “The impact of branching heuristics in propositional
satisfiability algorithms,” in 9th Portuguese Conference on Artificial
Intelligence (EPIA), 1999.

[19] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “SWORD:
A SAT like Prover Using Word Level Information,” in Int’l Conference
on Very Large Scale Integration, 2007.

[20] S. Ranise and C. Tinelli, “The Satisfiability Modulo Theories Library
(SMT-LIB),” www.SMT-LIB.org, 2006.

[21] D. Maslov, Reversible Logic Synthesis Benchmarks Page,
http://www.cs.uvic.ca/˜dmaslov/.

[22] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A,
no. 32, pp. 3266–3276, 1985.

[23] E. F. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3/4, pp. 219–253, 1982.

[24] D. M. Miller, “Spectral and two-place decomposition techniques in
reversible logic,” Midwest Symposium on Circuits and Systems, 2002.


