
Exact Synthesis of Elementary Quantum Gate Circuits
for Reversible Functions with Don’t Cares

Daniel Große1 Robert Wille1 Gerhard W. Dueck2 Rolf Drechsler1

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{grosse,rwille,drechsle}@informatik.uni-bremen.de

2Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada
gdueck@unb.ca

Abstract
Compact realizations of reversible logic functions are of

interest in the design of quantum computers. In this paper
we present an exact synthesis algorithm, based on Boolean
Satisfiability (SAT), that finds the minimal elementary quan-
tum gate realization for a given reversible function. Since
these gates work in terms of qubits, a multi-valued encoding
is proposed.

Don’t care conditions appear naturally in many re-
versible functions. Constant inputs are often required when
a function is embedded into a reversible one. The proposed
algorithm takes full advantage of don’t care conditions and
automatically sets the constant inputs to their optimal val-
ues. The effectiveness of the algorithm is shown on a set of
benchmark functions.

1. Introduction
Research in quantum circuit synthesis is motivated by

the growing interest in quantum computation [17]. Synthe-
sis for quantum circuits can be approached from two differ-
ent angles. Reversible logic circuits can be designed with
generalized Toffoli gates [20], that are later mapped into
quantum gates. The alternative is to target elementary quan-
tum gates directly during the synthesis process.

The minimization of generalized Toffoli networks has
been studied extensively. It is possible to construct opti-
mal circuits for all 23! = 40320 three-input functions [18]
and store the resulting circuits in a table. Once such a table
has been constructed, the optimal circuit for any three-input
functions can be found in constant time. For the synthe-
sis of larger reversible functions methods based on Boolean
Satisfiability (SAT) [7, 22] and Quantified Boolean Formula
(QBF) Satisfiability [24] have been proposed. These meth-
ods guarantee to find an optimal solution. However, too
complex functions have to be synthesized with heuristic
methods (see e.g. [12]). Once the circuit is obtained, the
generalized Toffoli gates are then translated into elementary
quantum gates [2]. During the linear translation the interac-
tion between the gates is ignored, and the resulting circuit
may be suboptimal. Techniques such as template matching
[14] can be used to reduce the gate count in the resulting
quantum circuit.

In order to avoid the mapping of Toffoli gates into quan-
tum gates, elementary quantum gates may be targeted di-
rectly. For this case, heuristic as well as exact methods
have been proposed. While the former ones (e.g. [1]) can
be employed with no guarantee of minimality the exact ap-
proaches are limited to small functions. The results of a
breath-first search that determines all optimal quantum cir-
cuits with three input variables are described in [13]. An-
other exact approach uses symbolic reachability analysis to
find optimal quantum circuits [9].

In this paper we present an exact synthesis algorithm
based on Boolean Satisfiability (SAT). The synthesis prob-
lem is expressed as a Boolean function such that it is satisfi-
able iff there exists a network of quantum gates with a given
depth. Thereby a multi-valued encoding is used for rep-
resenting the respective qubits used by the quantum gates.
Our method can be applied to synthesize completely spec-
ified function, as well as those with don’t care conditions.
All quantum circuits are by necessity reversible. To real-
ize a non-reversible function it must be embedded into a
reversible one. This results in garbage outputs and constant
inputs. We refer to [11] for a detailed treatment on garbage
in reversible networks. Garbage outputs are by definition
don’t cares. Additionally, when there are constant inputs,
these can be set arbitrarily. The proposed synthesis proce-
dure assigns the optimal values to the constant inputs during
this process. Our implementations shows significant speed-
ups over the algorithm described in [9], i.e. in the best case
quantum circuits are synthesized up to a factor of 45 faster.

The remaining paper is structured as follows. Section 2
describes the elementary quantum gates used in our target
networks and briefly reviews SAT. The exact synthesis al-
gorithm is presented in Section 3. Section 4 introduces the
improvements for incompletely specified functions. Exper-
imental results are discussed in Section 5. Finally, the paper
is summarized and conclusions are given.

2. Background
2.1. Elementary Quantum Gates

The basic building block for a quantum computer is the
qubit. A qubit is a two level quantum system, described by
a two dimensional complex Hilbert space. The two orthog-
onal quantum states |0〉 ≡

[
1
0

]
and |1〉 ≡

[
0
1

]
are used to

Gate Notation Matrix

NOT
„

0 1
1 0

«

CNOT

0B@ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CA

V

0B@
1 0 0 0
0 1 0 0
0 0 1+i

2
1−i
2

0 0 1−i
2

1+i
2

1CA

V+

0B@
1 0 0 0
0 1 0 0
0 0 1−i

2
1+i
2

0 0 1+i
2

1−i
2

1CA
Figure 1. Elementary quantum gates

represent the values 0 and 1. Any state of a qubit may be
written as |Ψ〉 = α|0〉 + β|1〉, where α and β are complex
numbers with the following condition |α|2 + |β|2 = 1. The
quantum state of a single qubit is denoted by the vector

(
α
β

)
.

The state of a quantum system with n > 1 qubits is given by
an element of the tensor product of the single state spaces
and can be represented as a normalized vector of length 2n,
called the state vector. The state vector is changed through
multiplication of appropriate 2n × 2n unitary matrices [2].

Elementary gates are the building blocks for quantum
computation. The following elementary gates are used in
this paper (the notation for the gates with the corresponding
matrices are shown in Figure 1):

• Inverter (NOT): A single qubit is inverted.

• Controlled inverter (CNOT): The target qubit is in-
verted if the control qubit is 1.

• Controlled V gate: The V operation is also know as the
square root of NOT, since two consecutive V operation
are equivalent to an inversion.

• Controlled V+ gate: The V+ gate performs the inverse
operation of the V gate, i.e. V + ≡ V −1.

All elementary gates are assumed to have unit cost [2]. Ad-
ditionally, when a CNOT and a V (or V+) gate are applied to
the same two qubits, the cost of the pair can be considered
as a unit as well [19]. The possible pairs (also known as
double gates) are shown in Figure 2. Using this cost metric
allows us a direct comparison to [9]. Note that our approach
is not limited to these metrics – other metrics can be applied
as well.

In this paper, the input to the circuit and each control
line of a gate is restricted to 0 and 1. This has the effect that
the value of each qubit is restricted to one of {0, 1, V0, V1}.
That is we are dealing with 4-valued logic [9], where V0 =
1+i
2

(
1
−i

)
and V1 = 1+i

2

(−i
1

)
.

Figure 2. Pairs of gates with unit cost

2.2. Boolean Satisfiability
The Boolean Satisfiability problem (SAT problem) is de-

fined as follows:

Definition 1 Let h be a Boolean function in Conjunctive
Normal Form (CNF), i.e. a product-of-sum representation.
Then the SAT problem is to determine an assignment to the
variables of h such that h evaluates to true or to prove that
no such assignment exists.

The CNF is a conjunction of clauses. A clause is a disjunc-
tion of literals and each literal is a propositional variable or
its negation.

In the past several algorithms (so called SAT solvers)
were proposed [3, 10, 16, 6]. Most of them are based on
three essential procedures: (1) The decision heuristic as-
signs values to free variables, (2) the propagation procedure
determines implications due to the last assignment(s) and
(3) the conflict analysis tries to resolve conflicts by back-
tracking. Advanced techniques like e.g. efficient Boolean
constraint propagation [16] or conflict analysis [10] are
common in state-of-the-art SAT solvers. Today, SAT is not
only used in formal verification, but in many application
domains like automatic test pattern generation or logic syn-
thesis.

3. Exact Synthesis Approach
In this section the exact synthesis algorithm is presented.

The basic idea is to check if there exists a quantum gate
network representation for the reversible function f with d
gates, where d is increased in the next iteration if no re-
alization is found. The iterative checks are performed by
(1) encoding the synthesis problem as a SAT instance and
(2) testing the SAT instance for satisfiability using an SAT
solver. In the following the Boolean encoding of the syn-
thesis problem is presented.

3.1. Boolean Encoding
For a reversible function the synthesis problem is ex-

pressed as a Boolean function Sd that is satisfiable iff there
exists a quantum gate network representation of size d.
Therefore, the following definitions are given:

Definition 2 Let f : Bn → Bn be a reversible function.
Then, ~xk

i = (xk
inxk

i(n−1) . . . xk
i1) with (1 ≤ i ≤ 2n) and

(0 ≤ k ≤ d) defines a vector representing the input, tem-
porary, or output variables at depth k for line i of the truth
table of f . The left side of the truth table corresponds to the
vector ~x0

i , the right side to the vector ~xd
i , respectively.

Since the temporary variables in ~xk
i can assume non-

Boolean values, i.e. besides 0 and 1 also V0 and V1 are pos-
sible, each xk

ij with (1 ≤ j ≤ n) represents a multi-valued

variable. For the transformation into CNF xk
ij is encoded by

using two Boolean variables yk
ij and zk

ij :

yk
ij zk

ij xk
ij

0 0 0
0 1 V0

1 0 1
1 1 V1

That is, if zk
ij is 0 the Boolean domain is considered,

otherwise the non-Boolean quantum states V0 and V1 are
selected.

Definition 3 Let f : Bn → Bn be a reversible function.
Then, ~wk = (wk

dlog2(g)e . . . wk
1) with (0 ≤ k ≤ d − 1)

defines a Boolean vector representing the chosen quantum
gate at depth k. Here g denotes the number of different
quantum gates in n variables.

Lemma 1 For a reversible function with n variables there
exists 3n(n− 1) + n different elementary quantum gates.

Proof 1 A CNOT, V and V+ gate has exactly one target
line and one control line. With n variables there are n(n−
1) possible choices for the target-control pair. Additionally
there are n possible NOT gates (one for each line). In total
we get 3n(n − 1) + n different elementary quantum gates.
�

Lemma 2 For a reversible function with n variables there
exists 4n(n− 1) double gates.

The proof is similar to Lemma 1. In the following elemen-
tary quantum gates and double gates are called quantum
gates. Thus, there are 7n(n − 1) + n quantum gates that
have be considered at each depth.

The application of the definitions and lemmas are illus-
trated with the following example.

Example 1 Figure 3 shows the variables needed to formu-
late the constraints for a function with n = 3 inputs/outputs
and depth d = 2. The possible positions for the quantum
gates are marked with dashed rectangles. For each of the
23 = 8 lines in the truth table n = 3 lines in the network
with the respective vectors for input, temporary, and output
variables are used (i.e. overall 3 · 8 = 24 lines are consid-
ered). As mentioned above the multi-valued variables of the
vector ~xk

i are represented by yk
ij and zk

ij . For each depth
3 · (3−1) ·7+3 = 45 different quantum gates are possible.
They can be defined by the dlog2(45)e = 6-bit vectors ~w0

and ~w1.

The defined variables are used to build the instance. The
Boolean formulation Sd for the synthesis of the reversible
function f consists of the conjunction of the following three
constraints:

1. The input/output constraints set the input/output pair
of each line of the truth table given by the reversible
function f :

Figure 3. Variables in S2 with n = 3 and d = 2
2n∧
i=1

[~x0
i]2 = i ∧ [~xd

i]2 = f(i)

Here [~x0
i]2 ([~xd

i]2) represents a natural number derived
by its corresponding binary encoding. Since the inputs
(outputs) are Boolean, no V0 and V1 are allowed for
the variables x0

ij in ~x0
i and xd

ij in ~xd
i , respectively (1 ≤

j ≤ n). Thus, each z0
ij (zd

ij) is assigned to 0, while
each y0

ij (yd
ij) is assigned to 1 or 0 according to the

truth table line (the specification of function f).

2. The functional constraints for the possible quantum
gates that are chosen by an assignment to ~wk are:

d−1∧
k=0

2n∧
i=1

~wk → (~xk+1
i = q(~xk

i , ~wk))

These constraints state that if in line i at depth k a con-
crete quantum gate is selected (i.e. ~wk is completely
assigned), the variables in the next depth k + 1 are
computed from the variables at depth k with the quan-
tum gate function q(~xk

i , ~wk). The function q(~xk
i , ~wk)

covers the functionality of a quantum gate represented
by ~wk.

3. Illegal assignments to ~wk are excluded in this con-
straint, since not all values of ~wk are legal to enumerate
all possible quantum gates:

d−1∧
k=0

[~wk]2 < g

We now have a Boolean formulation for the synthesis
problem which uses multi-valued logic for encoding the
quantum signals. It is well known that with the introduc-
tion of new variables the CNF form for any Boolean for-
mula can be produced in time and space linear in the size of
the original Boolean formula [21]. Therefore, we first de-
fine methods for the simple logic functions like AND, OR,

etc. that generate the corresponding clauses. Then, we ex-
tended this scheme for more complex logic. This allows
a mapping of our formulation including the quantum gate
function q(~xk

i , ~wk) to CNF. Furthermore, the assignments
of the input/output constraints are applied by using unit
clauses. Illegal assignments to ~wk are expressed by explic-
itly enumerating all values that are not allowed in form of a
blocking clause [15].

This results in a CNF representing the synthesis problem
of a reversible function f with d quantum gates that can be
given to a SAT solver. The instance is satisfiable iff there
exists a network realization for f with exactly d gates. In
this case, the resulting quantum gate circuit can be extracted
from the assignments to ~wk for each depth.

4. Incompletely Specified Functions
It is well known that many practical logic functions con-

tain don’t care conditions. That is, the output for certain
input combinations is irrelevant. Furthermore, in order to
make a function reversible, it is often necessary to add con-
stant inputs and garbage outputs [11]. Garbage outputs are
by definition don’t cares. In our SAT based procedure the
don’t care outputs can be left unspecified (the reversibility
is still guaranteed since only reversible gates are part of the
solution). The constants have to be assigned with a fixed
value.

However, to synthesize a quantum gate circuit with min-
imal costs for a function with constant inputs, both values
0 and 1 for each constant input have to be checked. For
example, while a minimal quantum gate circuit is found
for a half adder at depth 5 when the constant input of this
function is set to 1, a cheaper network representation with
costs 4 can be found if the constant is set to 0 (as shown
later in the experiments). For synthesizing the function
Decod24 [8] we can chose the values for the constant in-
puts from {00, 01, 10, 11}, i.e. more than one constant input
is needed and thus four independent runs of the synthesis al-
gorithm.

In this section we present two improvements for the
initial exact synthesis formulation of functions containing
garbage outputs and constant inputs. First we show, how
a SAT instance representing the synthesis problem can be
reduced by removing constraints that only define garbage
outputs. Then, a modification of the encoding is introduced,
that includes all possible combinations of constant values
and thus allows to find a minimal quantum gate circuit by
solving only one instance.

4.1. Removal of Constrains
As explained in Section 3 constraints for each line i en-

code the input/output specification and the quantum gate
functionality. The latter constraints ensure, that based on
the selected gates (by assignments to ~wk for each depth k)
the inputs of each truth table line are mapped to the corre-
sponding output. However, if the right side of a truth table
line only consists of garbage outputs (i.e. don’t cares), then
all constraints created for this line can be removed.

Table 1. Embedding of function f = a · b
c a b f g1 g2

0 0 0 0 - -
0 0 1 0 - -
0 1 0 0 - -
0 1 1 1 - -
1 0 0 - - -
1 0 1 - - -
1 1 0 - - -
1 1 1 - - -

Example 2 Consider the function f = a · b that was trans-
formed into a reversible one by adding a constant input and
two garbage outputs as shown in Table 1. All outputs of the
last four lines of the truth table are garbage outputs. Thus,
the values of all variables in ~xk

5 , ~xk
6 , ~xk

7 and ~xk
8 (i.e. all vari-

ables representing input, temporary or output variables at
the last four lines of the truth table at each depth k) are not
relevant; the corresponding constraints can be omitted.

By removing the useless constraints the number of
clauses is significantly reduced. Thus, a speed-up of the
overall synthesis time can be expected.

4.2. Constraining Constant Inputs
If constant inputs are used, different options exist on how

to assign these constants. In Example 2 the constant input
was assigned to 0. But the resulting quantum network is not
necessarily minimal. A smaller network may be possible if
the constant input is set to 1. Thus, both values for each con-
stant have to be checked. For example as already mentioned
for function Decod24 we can chose the values for the con-
stant inputs from {00, 01, 10, 11}. All these combinations
are encoded as single instances and separately solved by the
SAT solver. Our new approach uses an encoding that only
needs one instance for each depth. Here, all variables in ~x0

i ,
that represent a constant input will not be initially set to 0
or 1 by the input/output constraints. Instead constraints are
added, which ensure that all variables representing the same
constant are equal. This way, the SAT solver determines the
values for the constants. Since the considered constant in-
puts are now modeled symbolically (the value of each con-
stant input is not fixed to 0 or 1) only 2n−c truth table lines
have to be considered (where c is the number of constants).

Example 3 Again the function f = a · b of Example 2 is
considered. Here, the first input is a constant. (In the SAT
encoding x0

i1 is represented by y0
i1 and z0

i1 for each truth
table line i.) Instead of solving two SAT instances (the first
with x0

i1 = 0 and the second with x0
i1 = 1) only one has to

be solved just by not specifying the value of x0
i1 and addi-

tionally constraining x0
11 = x0

21 = . . . = x0
221. Then, the

SAT solver determines the value of the constant.

In total the number of SAT instances can be reduced sig-
nificantly and thus speed-ups in the overall synthesis time
are achieved as shown in the experiments.

Table 2. Incompletely specified functions
SAT +REMOVAL +CONSTRAINING

ENCODING OF CONSTR. CONST. INPUTS
D TIME D TIME D TIME

Half-adder
1 4 1.47 4 0.76 4 0.85
2 5 2.65 5 2.17 – –
total 4 4.12 4 2.93 4 0.85
Half-adder2
1 4 1.28 4 0.63 4 0.76
2 5 3.53 5 1.41 – –
total 4 4.81 4 2.04 4 0.76
Full-adder
1 6 297.56 6 36.79 6 209.95
2 7 1123.55 7 2321.33 – –
total 6 1421.11 6 2358.12 6 209.95
Low-High
1 7 10636.95 7 10458.71 6 2180.66
2 6 1444.26 6 1323.42 – –
total 6 12081.21 6 11782.13 6 2180.66
Zero-One-Two
1 7 430.30 7 398.17 6 132.46
2 6 91.23 6 38.34 – –
3 6 204.46 6 122.21 – –
4 6 477.84 6 181.6 – –
total 6 1203.83 6 740.32 6 132.46
Decod24
1 8 2162.51 8 1010.02 8 5110.26
2 8 4391.96 8 2120.46 – –
3 8 6158.05 8 2029.81 – –
4 8 6063.92 8 2263.88 – –
total 8 18776.44 8 7424.17 8 5110.26

5. Experimental Results
We implemented the presented synthesis algorithm in

C++. As a SAT solver we use MiniSat v2 [6] including sim-
plification [5]. Unless mentioned otherwise, experiments
have been carried out on an AMD Athlon 3500+ with 1
GB of main memory. All benchmarks have been taken
from [23].

5.1. Incompletely Specified Functions
We tested our approach for a set of benchmarks that are

embedded in reversible functions. The results are shown in
Table 2. For each function there are 2c entries, where c is
the number of constant inputs. Each line below the func-
tion name corresponds to one assignment of the constant
inputs. Columns labeled D show the number of gates in
the optimal circuit and columns labeled TIME list the corre-
sponding run-time in CPU seconds. Removal of constrains
as introduced in Section 4.1 lead to better run-times. In the
case of Decod24, the run-time is improved by more than
a factor of two. Only for the full adder more run-time is
required. This can be explained by a different decision or-
der of the SAT solver due to the structure of the respective
instance.

However, the combination of both improvements, i.e. re-
moving useless constraints as well as constraining the con-

Table 3. Effect of double gates
ELEM. GATES QUA. GATES

FUNCTION D TIME D TIME

Completely specified functions
3 17 10 1641.49 8 280.98

Miller 8 15.49 6 11.60
Fredkin 7 7.04 5 3.28

Peres 4 0.33 4 1.21
Toffoli 5 0.71 5 2.38

Peres-double 6 11.32 6 175.86
Toffoli-double 7 86.75 7 1121.68

graycode6 5 66.50 5 608.11
q4example 6 9.08 5 24.83

Incompletely specified functions
Half-adder 5 0.40 4 0.85

Half-adder2 4 0.19 4 0.76
Full-adder 7 145.07 6 209.95

rd32 6 37.75 6 436.11
Low-High 7 2245.47 7 2180.60

Zero-One-Two 7 32.05 6 132.46
Decod24 9 5660.77 8 5110.26

stant inputs, offers a significant speed-up for all examples.
The reduction of run-times is between 70% and 95%. Re-
ductions are more substantial if at least one of the assign-
ments has a solution with more gates than the optimal con-
stant input assignment. This can be observed for all func-
tions in Table 2 except Decod24. It should be noted that
the constraining of constant input variables requires some
computation time (i.e. run-times may be higher than those
for solving the function with a fixed constant input assign-
ment). However, this overhead is easily compensated by the
fact that only one instance needs to be solved.

5.2. Effect of Double Gates
Double gates (as shown in Figure 2) may not be available

at unit cost in the target implementation [2]. In fact, most
minimization methods (for example, [1, 14]) consider the
cost of a double gate to be two, since they are composed of
two elementary gates. To the best of our knowledge [9] de-
scribes the only minimization procedure that assigns a sin-
gle cost unit to double gates. Hence, there are compelling
reasons to consider minimizations that rely only on elemen-
tary gates.

In one experiment we ignored double gates. This reduces
the number of possible gates at each level from 7n(n−1)+n
to 3n(n − 1) + n (according to Lemma 1 and 2). The re-
sults are summarized in Table 3. In the first column the
name of the function is given. The next columns provide
the depth and the run-time in CPU seconds for the elemen-
tary gates and the quantum gates (i.e. elementary gates and
double gates), respectively.

In general, it is expected that more choices of possible
gates at each level will increase the time to find a correct
solution. This is clearly seen for the benchmark functions
where the inclusion of double gates offers no advantage
(i.e. both values for D are the same). For example, the
run-time for graycode6 increases by one order of magni-

Table 4. Comparison to exact synthesis in [9]
RA [9] SAT (PIII)

FUNCTION TIME TIME IMPR

Completely specified functions
Miller 318.29 34.53 > 9.2
Fredkin 78.02 10.96 > 7.1
Peres 35.18 4.43 > 7.9
Toffoli 122.52 8.45 > 14.5
Incompletely specified functions
Half-adder 6.77 2.99 > 2.3
Half-adder2 26.25 2.70 > 9.7
Full-adder 25200.00 551.92 > 45.7

tude when double gates are considered – even though the
results are identical with respect to the costs. On the other
hand for functions where the inclusion of double gates leads
to smaller circuits (e.g. 3 17), the run-time can be reduced
since fewer instances have to be solved.
5.3. Comparison with Previous Work

To compare our approach with the results obtained in [9]
we used a 733 MHz Pentium III with 512 MB of main mem-
ory that is significantly slower than a 850 MHz Pentium III
processor, the system used there. The outcome is shown
in Table 4. RA denotes the run-times of the reachability
analysis obtained from [9] and SAT the run-times of our
approach in CPU seconds (using both elementary and dou-
ble gates). IMPR gives the run-time improvement, i.e. the
run-time of RA divided by the run-time of SAT.

We were able to synthesize all functions from [9] that
were considered there for exact synthesis in significant
shorter run-time – even on a slower processor. Improve-
ments of at least a factor of 2 have been achieved. In the
best case an improvement of a factor of 45 is observed.

Furthermore, we compared the synthesized results for
the functions q4-example, Peres-double and Toffoli-double.
Here, the authors of [9] constrained the search space for
these functions. In fact they restrict the target-line of the
V and V+ gates to be the forth line. Therefore they cannot
guarantee optimal solutions.

The comparison in Table 5 shows, that our approach is
able to find the optimal results for these functions with a
low run-time increase (the results of the heuristic approach
of [9] are denoted by RAheu). Thereby, we prove that for
Peres-double and Toffoli-double the minimal quantum gate
networks have been found in [9]. Additionally, in case of
q4-example our approach synthesizes an optimal quantum
gate representation with costs 5 instead of the sub-optimal
circuit of size 6 obtained in [9]. Note, again all these bench-
marks are carried out on a slower system than the one used
in [9]. For absolute run-times on a fast computer see the
rightmost column of Table 3.

6. Conclusions
In this paper we presented an exact synthesis algorithm

that finds the minimal realization for a given reversible
function. We have demonstrated our synthesis algorithm on
a set of benchmarks. The resulting circuits consist of ele-
mentary quantum gates. We presented significant improve-

Table 5. Comparison to heur. synthesis in [9]
RAheu [9] SAT (PIII)

FUNCTION D TIME TIME D

Peres-double 6 171.27 481.71 6
Toffoli-double 7 853.78 2985.88 7
q4-example 6 34.78 78.09 5

ments of our approach for incompletely specified functions.
Furthermore, the algorithm can be modified to accommo-
date different gate libraries. We have shown this by includ-
ing/excluding double gates. As in case of optimal logic syn-
thesis of Boolean functions [4], large libraries have a neg-
ative effect on the run-time of the synthesis procedure, but
may lead to smaller circuits. In comparison to the previous
exact synthesis method, in the best case we synthesized the
functions up to a factor of 45 faster.

References
[1] A. Abdollahi and M. Pedram. Analysis and synthesis of quantum circuits by

using quantum decision diagrams. In Design, Automation and Test in Europe,
pages 317–322, 2006.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum
computation. Phys. Rev. A, 52(5):3457–3467, 1995.

[3] M. Davis, G. Logeman, and D. Loveland. A machine program for theorem
proving. Comm. of the ACM, 5:394–397, 1962.

[4] R. Drechsler and W. Günther. Towards One-Path Synthesis. Kluwer Academic
Publishers, 2002.

[5] N. Eén and A. Biere. Effective preprocessing in SAT through variable and
clause elimination. In SAT, pages 61–75, 2005.

[6] N. Eén and N. Sörensson. An extensible SAT solver. In SAT, volume 2919 of
LNCS, pages 502–518, 2004.

[7] D. Große, X. Chen, G. W. Dueck, and R. Drechsler. Exact SAT-based Toffoli
network synthesis. In Great Lakes Symp. VLSI, pages 96–101, 2007.

[8] P. Gupta, A. Agrawal, and N. Jha. An algorithm for synthesis of reversible logic
circuits. IEEE Trans. on CAD of Integrated Circuits and Systems, 25(11):2317–
2330, 2006.

[9] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. A. Perkowski. Optimal
synthesis of multiple output boolean functions using a set of quantum gates by
symbolic reachability analysis. IEEE Trans. on CAD, 25(9):1652–1663, 2006.

[10] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Trans. on Comp., 48(5):506–521, 1999.

[11] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. IEEE
Trans. on CAD of Integrated Circuits and Systems, 23(11):1497–1509, 2004.

[12] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with
templates. IEEE Trans. on CAD of Integrated Circuits and Systems, 24(6):807–
817, 2005.

[13] D. Maslov and D. M. Miller. Comparison of the Cost Metrics for Reversible
and Quantum Logic Synthesis. ArXiv Quantum Physics e-prints, 2005.

[14] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck. Quantum circuit sim-
plification using templates. In Design, Automation and Test in Europe, pages
1208–1213, 2005.

[15] K. L. McMillan. Applying SAT methods in unbounded symbolic model check-
ing. In Computer Aided Verification, volume 2404 of LNCS, pages 250–264,
2002.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. In Design Automation Conf., pages 530–535,
2001.

[17] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

[18] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of re-
versible logic circuits. IEEE Trans. on CAD of Integrated Circuits and Systems,
22(6):710–722, 2003.

[19] J. A. Smolin and D. P. DiVincenzo. Five two-bit quantum gates are sufficient
to implement the quantum fredkin gate. Phys. Rev. A, 53(4):2855–2856, 1996.

[20] T. Toffoli. Reversible computing. In ICALP, pages 632–644, 1980.
[21] G. S. Tseytin. On the complexity of derivation in propositional calculus. In

A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logic II, volume 8 of Seminars in Mathematics: Steklov Mathem. Inst., pages
115–125. 1970.

[22] R. Wille and D. Große. Fast exact Toffoli network synthesis of reversible logic.
In Int’l Conf. on CAD, pages 60–64, 2007.

[23] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: an
online resource for reversible functions and reversible circuits. In Int’l Symp.
on Multi-Valued Logic, 2008. RebLiv is available at http://www.revlib.org.

[24] R. Wille, H. M. Le, G. W. Dueck, and D. Große. Quantified synthesis of re-
versible logic. In Design, Automation and Test in Europe, 2008.

